
J .  FluidMech. (1989), vol. 199, p p .  519-540 

Printed in Great Britain 
519 

A theoretical and experimental study of 
double-layer convection 

By S. RASENAT, F. H. BUSSE AND I. REHBERG 
Institute of Physics, University of Bayreuth, D-8580 Bayreuth, FRG 

(Received 26 January 1988) 

The onset of thermal convection in a double layer of two superimposed immiscible 
fluids heated from below is investigated. The linearized equations of the problem are 
analysed in a much wider region of the parameter space than has been studied before. 
It is shown that the onset of steady convection in the two layers may occur in the 
form of either viscously or thermally coupled motions. In addition to the oscillatory 
interfacial instability, which depends on a non-vanishing distortion of the interface, 
there exists another oscillatory instability which corresponds to a cyclic variation 
between viscous and thermal coupling. Conditions for the onset of this instability are 
outlined and its connections with the other modes of the system are demonstrated in 
bifurcation diagrams. In the experiments the shadowgraph method is used for the 
visualization of the onset of convection and for the measurement of its wavelength. 
Changeovers between viscous and thermal coupling can be identified, but the 
experimental realization of an oscillatory onset has been elusive so far. 

1. Introduction 
The problem of convection in two superimposed layers of immiscible liquids has 

received much attention in recent years. Originally most of the research was 
motivated by the suggested occurrence of two-layer convection in the Earth’s 
mantle. The 670 km seismic discontinuity has been interpreted by some geophysicists 
as an interface separating two different types of mantle material. Richter & Johnson 
(1974) studied the dynamical implications of convection in superimposed layers of 
equal size and Busse (1981) investigated the case when the layers had quite different 
thickness. Further recent work on two-layer mantle convection has been described 
by Cserepes & Rabinowicz (1985) and Ellsworth & Schubert (1985). A laboratory 
study by Nguyen & Kulacki (1980) is also relevant. 

Even without the possible application to mantle convection the problem of 
convection in superimposed layers has attracted considerable attention because of 
the possibility of Hopf bifurcations. While it can be shown that a single layer of fluid 
heated from below becomes unstable only through a monotonically growing 
instability, the possibility of overstable oscillations cannot be excluded in two 
superimposed layers. Indeed, a Hopf bifurcation was found by Gershuni & 
Zhukhovitskii (1982) even in the limit of negligible distortion of the interface. The 
distortion of the interface introduces an additional degree of freedom, and a Hopf 
bifurcation in this case had already been discussed by Richter & Johnson (1974). For 
more recent work on this topic we refer to Renardy & Joseph (1984) and to Renardy 
& Renardy (1985). The opportunity to investigate the nonlinear interaction between 
a Hopf bifurcation and a monotonic bifurcation or between two monotonic 
bifurcations has added to the appeal of the problem. A very recent nonlinear analysis 
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of an idealized version of the two-layer convection problem has been given by 
Proctor & Jones (1988). 

Besides the numerous attractive features of the two-layer-convection problem, 
there are some less attractive properties which are in part responsible for the fact 
that it did not receive more attention in earlier years. First, there is the high- 
dimensional parameter space of the problem which has made it difficult to gain an 
overview over the manifold of solutions of the linear problem. Convection in a single 
layer of a Boussinesq fluid is governed by two dimensionless parameters, the 
Rayleigh and the Prandtl number, of which the latter drops out from the linear 
version of the problem. But of the order of ten non-dimensional parameters may be 
important in the two-layer problem. Some of those parameters, such as the 
Marangoni number for the interface or the ratio between the density difference of the 
fluids and the thermally induced density variation, can be eliminated from the 
problem by the consideration of special limits. But for the ratios of material 
properties there do not exist any preferred values. 

Only a very small region of the parameter space is accessible in laboratory 
experiments. The experimental difficulties are compounded by the fact that there are 
few combinations of liquids that are truly immiscible. In most cases some diffusion 
of material occurs across the interface and the experiments have to be carried out in 
such a way that the timescale of the dynamic processes is short in comparison with 
timescale of the change of properties by the effects of diffusion. Nevertheless, there 
are a number of interesting features that can be realized in the laboratory. Careful 
measurements are highly desirable, especially with respect to nonlinear effects which 
are not readily accessible to theoretical analysis. Some initial attempts to obtain 
quantitative measurements of properties of two-layer convection will be reported at 
the end of this paper. 

The primary goal of the theoretical analysis of this paper is a reasonably complete 
study of the linear problem of the onset of convection in superimposed layers. While 
it is impossible to derive plots of the critical conditions for all dimensionless 
parameters, the occurrence of interesting dynamical features can be traced in the 
parameter space. We are thus able, for example, to recognize the oscillatory solution 
of Gershuni & Zhukhovitskii (1982) as an intermediate form of convection between 
the viscous and thermal coupling cases. A guiding principle for our analysis is the 
property that both layers are close to instability by overturning motions since the 
corresponding part of the parameter space is the most likely one to offer new 
features. The remaining, and far larger, part of the parameter space probably does 
not deviate much from the case of ordinary single-layer convection in that 
convection occurs in one of the layers while the stable second layer plays a passive 
role. 

The paper starts with the mathematical formulation of the problem in $2. 
Distortions of the interface will be Qeglected until $5. In $3  the competition between 
viscous and thermal coupling is described, and in $4 the oscillatory modes are 
analysed as a special feature of this competition. Another type of oscillation becomes 
possible when distortions of the interface are included in the analysis as is done in $5. 
A laboratory experiment is described in $6 and some measurements are reported in 
$ 7. The concluding remarks summarize the progress that has been achieved and 
provide an outlook on future work. 
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FIGURE 1. Geometrical configuration of the problem, with streamlines indicating 
a case of thermal coupling. 

2. Mathematical formulation of the problem 
We consider two horizontal fluid layers with the lighter fluid of density p*  on the 

top of the heavier fluid with the density p as shown in figure 1. Using the thickness 
d of the latter fluid as lengthscale, d2/K as timescale and pd as scale of the 
temperature, we obtain for the lower layer a dimensionless form of the equations 
governing the velocity vector u and the deviation 8 of the temperature from its static 
distribution : 

P-’ --+u.V u = -Vn+Rk8+V2U, (2 . la )  

V . u  = 0, (2 . lb)  
C t  1 

(2.1 c)  

The constants K and p denote the thermal diffusivity and the absolute value of the 
static temperature gradient. We have assumed a Boussinesq fluid in that the 
variation of density with temperature, 

ii = P(1-Y(T-To)L (2.2) 

is taken into account only in the gravity term. All terms that can be written as 
gradients in the equation of motion (2 . la )  have been combined in the term Vn. The 
vertical unit vector k is directed opposite to gravity and the Rayleigh and Prandtl 
numbers are defined by 

where v is the kinematic viscosity of the lower fluid and g is the acceleration due to 
gravity. Using the same scales we can write the equations for the dimensionless 
velocity vector u* and for the dimensionless deviation 8* of the temperature from its 
static distribution in the upper fluid layer in the form 

U* = -Vn* /po+yoRk8*+~,V2~* ,  (2.4a) 
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v.u*  = 0, (2.4b) 

( 2 . 4 ~ )  (:+ U*. v) 8* = U*- kp0 -k KO v28*, 

where yo, vo, Po, K ~ ,  po denote the ratios between the properties of the upper and the 
lower layers, 

K* P* 
' O - P '  P 

P* K O = ; ,  P o - - .  v* P 
0 -  

yes:-, Y* v = - = L ?  p = -  
Y v Po 

In the following we shall use a Cartesian system of coordinates with the z-coordinate 
in the direction of k .  The equilibrium position of the interface between the fluids is 
assumed to  be given by z = 0. Distortions of the interface from this position are 
described by the function c(x, y,t) such that the instantaneous position is given by 

F ( x , y , ~ , t )  = z - ~ = O .  (2.6) 

The kinematic condition for the material interface, DF/Dt = 0, yields two equations 
for g: a a 

- c - u - k + u - V [ =  at 0, - c -u*-k+u**Vc  at = 0. (2.7) 

The outer boundaries of the double layer are located a t  z = - 1 and a t  z = do. For 
simplicity we shall assume no-slip conditions at these boundaries together with fixed 
temperatures, 

U, = a,u, = 0 = 0 a t  z = - 1 ,  u,* = a,u; = 8* = 0 at z = do,  (2.8) 

where the condition for the tangential component of the velocity has been 
transformed into a condition on the vertical component with the help of the equation 
of continuity. 

Since we are restricting the attention in this paper to the onset of infinitesimal 
disturbances we can neglect the terms u.Vu, u-VB and u - v g a n d  the analogous terms 
for the upper layer in (2.1), (2.4) and (2.7). Without losing generality we may write 
the solution in the form 

(2-9) (uz, u:, e, o*, g) = ( 9 ~  +*(Z), 7 ( 4 ,  T* (z ) ,  go) ~ X P  ( i a ~ + a t ) .  

Because of the horizontal isotropy of the layer, three-dimensional solutions will yield 
the same eigenvalue a as the two-dimensional solution (2.9) as long as the horizontal 
wavevectors have the same absolute value a. 
curlcurl of (2.1) and (2.4) we obtain 

By taking the z-iomponent of the 

(2.10a) 

The kinematic condition (2.7) at the interface becomes 

C T < ~ = $ = $ *  a t  z = O .  (2.11a) 

The continuity of the temperature, the heat transport and the tangential velocity 
require the conditions 

-c0+7 = -p0[0+7* a t  z = 0, (2.11b) 
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a a 
aZ az 
-r=A,-r* at z = O ,  

a a 
aZ a Z  
-$=-$* at Z = O ,  

(2.11c) 

(2 .11d)  

where the equation of continuity has been used for the derivation of condition 
(2 .11d) .  The ratio of A, of the thermal conductivities between the upper and lower 
layers is usually equal to hl. But in the case of mantle convection only the 
superadiabatic part of the temperature gradient enters Po and thus A, and Po may be 
independent. In deriving the equation for the continuity of the tangential stress we 
must take into account the variation with temperature T of the surface tension Z, 

(2.11e) 

where the Marangoni number M is defined by 

The continuity of the normal stress requires 

where S is the dimensionless surface tension. 

s = zd/vpK. 

In order to avoid the distinction between the ratios of kinematic and dynamic 
viscosities, we shall assume that the density difference across the interface, p -p* ,  is 
small. This assumption does not contradict the fact that the ratio (p -p*)/pyPd is 
large in typical laboratory situations, since the relative change in density owing to 
thermal expansion rarely exceeds For this reason and because of the additional 
stabilizing influence of surface tension, the bracket multiplying c, is usually large 
with the consequence that the distortion f has a negligible effect on the dynamics 
of double-layer convection. In $ 3  and 4 the limit of vanishing Q will thus be assumed. 
We shall return to the case of finite [, in $5.  

Equations (2 .10)  together with the boundary conditions (2 .8)  and the matching 
conditions (2.11) at z = 0 can be solved by the shooting method. Three independent 
solutions $,(z), $,*(z), n = 1 , 2 , 3 ,  of (2.10) can be obtained by integrating numerically 
towards z = 0 from z = - 1 and z = do, respectively, because there are three 
independent choices of the unspecified boundary conditions possible at the initial 
points z = - 1 and z = do. The correct solution satisfying the matching conditions as 
well can be represented as a superposition of the three independent solutions in each 
layer : 

$(z) = Z489,(z), $*(z) = r, B,  $t(z). 
1 f l  

The six matching conditions (2.11) provide six linear homogeneous equations for the 
coefficients A,, B, which are solvable if and only if (r is an eigenvalue. Since we are 
interested in the case of marginal stability we replace CT by io and regard R as the real 
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part of the eigenvalue instead of the real part of 6. The lowest value R,(a) of R as a 
function of a for which solutions exist will be considered in the following. Of 
particular interest is the absolute minimum of R,(a) since it describes the critical 
value of the Rayleigh number a t  which the onset of convection must be expected. 

A Runge-Kutta scheme has been used for the numerical integration of (2.10). For 
each of the intervals, - 1 < z < 0 and 0 < z < do, 50 steps were typically used. 
Comparisons with computations based on 25 and 100 steps indicate an accuracy of 
about three digits for the solutions. The zeros of the determinant of the linear 
equations for the unknowns A,,, B,, have been obtained with a Newton-Raphson 
iteration method. In  the case of steady onset of convection, o = 0, the determinant 
is real and its zero determines the eigenvalue R,(a).  Oscillatory onset of convection, 
o =I= 0, leads to a complex determinant, the real and imaginary parts of which must 
vanish. These two conditions yield the values for R,(a) and @(a).  

3. Onset of convection with viscous and thermal coupling 
In addition to the neglect of the distortion <, of the interface and the assumption 

of nearly equal densities of the two fluids we introduce some further simplifications 
in order to reduce the dimension of the parameter space. Since Marangoni effects 
become important in comparison to buoyancy forces only if the thickness of the layers 
becomes sufficiently small, it is possible to consider the limit M x 0 in which case the 
number of parameters of the problem is decreased by one. The opposite limit, of 
dominating Marangoni effect and vanishing buoyancy force, has been considered by 
Zeren & Reynolds (1972). These authors also mention that the Marangoni effect is 
often much diminished because of the presence of small impurities a t  the surface. It 
thus seems to be justified to consider the problem without this effect. Since the 
specific heat of various liquids does not vary much and since it appears to have little 
influence on the dynamics of the problem it seems appropriate to set the ratio c*/c 
equal to unity with the result A, = K,. Since we shall also assume Po = K ; ~  unless 
indicated atherwise, our task has thus been reduced to the problem of determining 
the critical conditions as a function of the parameters do, yo, K,, ,uo and P. In this 
section we shall restrict the attention to the onset of stationary convection, in which 
case the Prandtl number P does not enter the analysis. 

It is convenient to introduce a separate Rayleigh number R* for the upper layer, 
which is defined by 

R* = R y O d ~ / K ~ , u o .  (3.1) 

The ratio R*/R provides a measure for the ratio of the contributions from the two 
layers to the buoyancy-driven instability. When this ratio is significantly different 
from unity, the onset of instability occurs primarily in one layer while the other layer 
plays a passive role. Motions in the latter layer are weak and are driven primarily 
through viscous coupling a t  the interface. Even in the case R x R* one of the two 
layers may play a passive role if do is either large or small compared with unity since 
the optimal wavenumbers are very different for the two layers. In  this case, however, 
some novel features may occur which will be discussed in the next section in 
connection with the oscillatory onset of convection. 

A typical case in which both layers provide the same contribution to the 
buoyancy-driven instability is given by two fluids with nearly the same properties 
and with do = 1.  The critical Rayleigh number for this case is well known (Pellew &, 
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F’IQURE 3. The functions $(z )  (solid) and O(z)  (dashed) for the thermal coupling case 
of figure 2 for a = 2.5, R = 1296. 

- -- - - - - 

Southwell 1940) since it corresponds to that of a single layer with a rigid and a stress- 
free boundary : 

R, = 1101, a, = 2.67. (3.2) 

In addition to this eigenvalue, which corresponds to the minimum of curve (a)  in 
figure 2,  there is another slightly higher eigenvalue given by curve (b)  of figure 2. 
While the critical Rayleigh number (3.2) is associated with an antisymmetric 
function #(z) (here and in the following we replace q5* by #(z )  with z > 0) ,  curve (b )  
corresponds to a symmetric function # ( z )  as shown in figure 3. Since the temperature 
field 6 ( z )  does not change sign, the convection motion in the two layers is thermally 
coupled in this case, in contrast to the normal viscous coupling. The main difference 
between the viscously coupled and the thermally coupled state is expressed in the 

5 o o - ” ” l b l 1 l !  I 1 1 1 1 1  ! 1 1 1 1 -  

FIQURE 2. Two layers with the same material properties superimposed, yo = yo = K~ = do = 
/3, = 1.  The curves describe the onset of convection with (a)  viscous, and ( b )  thermal coupling. 



526 

$ 3 4 8  

S.  Rasenat, F .  H .  Busse and I. Rehberg 

I .o 

0 
- 1.0 0 

z 
1 .o 

FIGURE 4. Eigenfunctions $ ( z )  (solid) and O ( z )  (dashed) for two branches in the case yo = do = 1. 
K~ = 0.2, pLo = 25, R = R* with R, = 1101, a, = 2.67 (lower branch. ( 0 )  curves) and R = 1296. 
a = 2.6 (upper branch, (6) curves). 
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FIGURE 5. Eigenfunctions #(z )  (solid) and B ( z )  (dashed) in the case yo = K~ = 1. do = 0.25 
p,, = 11256, R = R, = 928. a,. = 2.6. 

sign of the vorticity. While in the former state the rolls have the opposite sense of 
circulation, the vorticity has the same sign on both sides of the interface in the 
thermally coupled case. This condition is often satisfied in an average sense only since 
a small third counter-rotating roll may develop near the interface. But this property 
does not change the fact that there are two basically different types of coupling 
between superimposed layers. 

It may appear that thermal coupling is a rare event and that viscous coupling is 
usually preferred, as in the case of figure 2. But a small change of the parameters 
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FIGURE 6. Neutral curves R(a) for the case of Busse (1981), yo = tc0 = P = 1, po = 0.1, do = 0.25, 
/3,, = 25, with stress-free conditions at z = - 1, do. For the Hopf bifurcation branch the frequency 
w is given by the dashed curve (scale on the right side). 

leads to a preferred thermally coupled state. The choice of po = 25, K~ = 0.2 has 
hardly changed the two curves in figure 2, but both eigenfunctions represent 
thermally coupled states now, as shown in figure 4. 

Thermal coupling also occurs when do differs quite significantly from unity. In 
figure 5 a critical state for do = 0.25 is shown, where the properties have again been 
chosen in a way that ensures the equality R = R*. While viscous coupling may still 
predominate at the critical Rayleigh number, it seems to be replaced often by a 
thermally coupled state as the amplitude of convection increases. The fully nonlinear 
analyses of Cserepes & Rabinowicz (1985) and of Ellsworth & Schubert (1985) 
provide examples for this observation and in $7 we shall report on some experimental 
evidence for it. 

Before considering some of the parameter regimes in more detail we discuss the 
onset of oscillations as an intermediate state between the states of viscous and 
thermal coupling. 

4. Convection in the form of the oscillatory coupling instability 
Oscillatory modes in the form of propagating gravity or capillary waves at the 

interface form a prominent part of the solution spectrum of (2.10) and (2.11) when 
a distortion 5, is admitted. Their influence on the convective instability will be 
discussed in the next section. Oscillatory modes with vanishing distortion are less 
obvious, and their appearance in the analysis of Gershuni & Zhukhovitskii (1982) was 
registered with surprise. It is not clear from the latter paper that a Hopf bifurcation 
will ever correspond to the point of marginal stability. 

In the paper of Busse (1981) two-layer convection with w = 0 was investigated 
for stress-free outer boundaries, i.e. a:zu, = 0 at z = - 1 and at z = do. In  the case 
do = 0.25, po = 0.1, yo = K~ = 1, R* = 12512/128 it was noticed that no steady onset 
convection existed within an intermediate range of wavenumbers. The open question 
of an oscillatory onset has led to a new analysis of the problem. Indeed, as shown in 
figure 6 there is a Hopf bifurcation branch connecting the two monotonic branches 
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FIQURE 7. Eigenfunction $ ( z )  for the case of figure 6 a t  R = 1463. a = 4.5 with w = 5.22. The curves 
( a ) .  ( b ) ,  ( c ) ,  (d )  describe $ ( z )  a t  the times t = 0. 7r/3w, 27r/3w, n/w,  respertively. The thermal 
coupling phase is evident in case ( c ) .  

1 .O 
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0.8 1 .o 1.2 1.4 1.6 1.8 

d0 

FIQURE 8. Approximate boundaries between the regimes of viscous coupling and oscillatory 
coupling (solid lines), between oscillatory coupling and thermal coupling (dash-dotted lines) and 
between thermal and viscous coupling (dashed lines). Two cases are shown, yo = 0.25 and 1.0. 
Increasing yo corresponds to decreasing domains of oscillatory coupling. The scale for po on the 
right side applies for yo = 1 ;  the scale must be multiplied by yo in the other case. The other 
parameters are chosen surh that R = R* holds for do = 1. 

which describe the onset of convection, with high and low wavenumbers 
predominating in the upper and lower layers, respectively. The structure of the 
eigenfunction, as indicated in figure 7, clearly indicates that the Hopf bifurcation 
represents an alternating viscous and thermal coupling process. Because of the phase 
shift of about 60" in the motions on both sides of the interface, the superimposed rolls 
exhibit the same sense of circulation during a significant part of the cycle. Nearly the 
same diagrams as shown in figures 6 and 7 have been obtained for rigid boundaries 
at z = - 1, do (Rasenat 1987). 

The Hopf bifurcation in the case do = 0.25 is of lesser interest since the critical 
Rayleigh number is given by the monotonic branches. The oscillatory coupling 
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4 

FIGURE 10. The minimum Rayleigh numbers R,  (solid) and the corresponding minimizing 
wavenumber a, (dash-dotted) as a function of do for the case yo = 1 ,  K~ = 0.4, puo = 6.25 of figure 8. 
Scales for the frequency w, (dashed) and for a, are given on the right-hand side. 

instability, as we shall call the Hopf bifurcation when it yields the critical conditions, 
is indeed found in cases when do is closer to unity. In  figure 8 the results of a 
systematic study of the onset in the form of oscillatory, steady thermally coupled 
and steady viscously coupled convection is shown. The different modes of convection 
are shown as a function of do and K ~ .  The value of p0 has been chosen in such a way 
that R = R* holds for do = 1 ; but elsewhere the Rayleigh numbers R and R* differ. 
Two values of yo have been used, which demonstrate that the contrast in thermal 
expansivity between the two layers as well as a contrast in the viscosity in the 
opposite direction promote the thermal coupling mode. That the thermal diffusivity 
contrast has a smaller effect will become evident later. 

In moving from left to right in figure 8 the transition from steady viscously 
coupled convection to steady thermally coupled convection occurs via the oscillatory 
mode. In figure 9 the change in the eigenfunctions is indicated for representative 
cases. The phases of the oscillatory convection are similar to those of figure 7 except 
for the temperature variations, which resemble more closely those of the vertical 
velocity. The transition from thermal coupling back to viscous coupling occurs 
through the generation of a third roll as shown in figures 9(c)  and 9(d). Somewhat 
arbitrarily the boundary in figure 8 between the two types of coupling has been 
defined as the place where the two counter-rotating rolls reach about equal strength. 
In figure 10 the relationship between monotonic bifurcations and Hopf bifurcations 
becomes clarified through the plot of the critical Rayleigh number along the line 
K~ = 0.4 of figure 8. The two monotonic branches that merge to form the oscillatory 
branch (and its complex conjugate) represent viscous and thermal coupling. On the 
left side, the lower branch corresponds to viscous coupling, the upper one to thermal 
coupling; on the right side the opposite situation holds, at least initially until the 
lower branch returns to viscous coupling through the generation of the third roll. The 
evolution of the oscillatory branch in figure 10 near do = 0.9 is shown in figure 11. 

As we have mentioned before, onset of convection in the form of thermally coupled 
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FIQURE 12. Approximate boundaries between regimes of viscous, oscillatory and thermal coupling 
in the case yo = 0.25. The boundaries follow the description of figure 8 except that no dashed curve 
appears. In the present figure the dashed curve describes the case yo = 1.0 where no oscillatory 
instability has been found. In contrast to figure 8, pa is given by the condition R = R*, i.e. 
p o  = ~;":d: .  

P 0.001 0.01 0.1 1 10 100 1000 

a, 2.61 2.70 2.647 2.63 2.63 2.63 2.63 
RC 1191.3 1190.8 1189.8 1197.2 1201.0 1201.6 t 201.6 

WC 0.0074 0.072 0.437 1.001 1.18 1.20 1.21 

TABLE 1. Dependence of critical parameters of the oscillatory coupling instability on the 
Prandtl number P in the case do = 1 ,  pa = 3.125, K,, = 0.4, yo = 0.4, yo = 0.5 

motions or oscillatory motions can be expected only if the Rayleigh numbers in the 
two layers are not very different. Otherwise convection in the layer corresponding to 
the lower value among R and R* plays a passive role and becomes viscously driven. 
For this reason viscous coupling becomes the rule in the plots of figure 8 as do differs 
sufficiently markedly from unity. This property suggests a different cut through the 
parameter space of the problem in which po is determined through the condition 
R = R* for all do. Instead of po = K;~Y,,, as in figure 8, we use po = Ko2yod: for the 
diagram of figure 12. In  this figure the lines of constant viscosity contrast p0 have an 
inclination similar to  that of the curve separating viscous and thermal coupling. Since 
viscous coupling becomes rather ineffective when po differs much from unity there is 
no return to viscously coupled convection with growing do as po increases strongly 
with do. 

All frequencies shown in figures 6, 10 and 11 have been computed for P = 1. For 
larger values of the Prandtl number, Rayleigh numbers and frequencies change very 
little, but for small P the frequency w, varies proportionally to  P as is evident from 
table 1. This behaviour indicates that  the sum of the viscous and the thermal 
timescales determines the period of the oscillatory coupling instability, as must be 
expected on the basis of the physical mechanism discussed above. 
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FIQURE 13. Keutral curves R(a) for the case yo = do = K~ = p 0  = P = 1 with R = R*, 
R( 1 --p,)(yPd)-' = lo3. The dashed curve (right scaEe) indicates the frequency of the Hopf 
bifurcation curve (c). The curves (a), (b) correspond closely to the curves of figure 2. The details near 
the codimension-two point are shown in the inset figure. 
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5. Convection with significant distortion of the interface 
It is obvious from (2.1 if) that the distortion co can enter the problem only in the 

case when ( p - p * ) / p  is of the same order as yBd. Since the latter quantity is assumed 
to be small compared with unity according to the Boussinesq approximation the 
same must be assumed for ( p  - p * ) / p ,  where p* < p is supposed to hold in the following 
unless stated otherwise. For this reason the calculations mentioned by Gershuni & 
Zhukhovitskii (1976) are not entirely consistent with the Boussinesq approximation. 
Since the dimensionless surface tension X is of the order lo6 for many combinations 
of immiscible liquids, it is no$ easy to obtain laboratory situations in which the 
distortion co becomes significant. Special surfactants may have to be used to reduce 
the surface tension of immiscible liquids. For simplicity we shall restrict attention to 
the limit of vanishing S in the following. 

An example of the oscillatory instability with distortion is given in figure 13. Two 
layers of equal properties have been chosen. The curves (a, b )  for monotonic 
bifurcations are the same as those shown in figure 2 except that they are shifted to 
slightly higher Rayleigh numbers. The oscillatory mode, however, depends on the 
presence of the distortion and the eigenfunction for the vertical velocity reaches a 
maximum at the interface throughout almost the entire cycle. We have chosen the 
value lo3 for the ratio (1 -po)R/y /3d  which depends only on the material properties 
of the two liquids. For higher values of this ratio the curve (c) in figure 13 would move 
up and the curves (a,b) would move even closer to those of figure 2. The mechanism 
of instability obviously depends on the approximate inequality '/pd > (1 - p o )  which 
implies that the density of the bottom half of the lower layer is lower than the density 
in the top half of the upper layer in spite of the stabilizing density jump across the 
interface. The oscillatory character of the .instability indicates that a Rayleigh- 
Taylor type overturning instability operates throughout part of the cycle, while 
dissipative effects together with the stabilizing density contrast across the interface 
lead to a restoring force throughout the remainder of the cycle. The name 'oscillatory 
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FIQURE 14. The Rayleigh number as a function of pa in the case do = P = 1, yo = 0.5, K~ = 0.4, 
p0 = 3.125, a = 2.6, R(yBd)-' = 10'. The wavenumber a = 2.6 has been chosen because it 
corresponds to the critical value in the case Q = 0. The dashed lines (measured on the right 
ordinate) indicate the frequencies of the oscillatory interfacial (i) and the oscillatory coupling (c) 
instabilities. 

interfacial instability ' seems to  be appropriate to  distinguish this instability from the 
oscillatory coupling instability. 

I n  order to study the influence of the new parameter 1-pa on the problem we 
choose a case for which the critical Rayleigh number corresponds to the onset of the 
oscillatory coupling instability in the limit ca = 0. Indeed, as is shown in figure 14, 
this limit with R, z 1200, w = 1 is approached as 11 -pa( becomes of the order 
3 x lop3 or larger. As 1 -pa  decreases to 2 x the frequency vanishes and the 
oscillatory mode and its complex conjugate change into two monotonic modes. The 
one with the lower Rayleigh number is characterized by viscous coupling, the other 
by thermal coupling. As I-pa decreases further to  less than the oscillatory 
interfacial mode bifurcates from the thermal coupling branch. It joins the viscous 
coupling branch at the point R = 0, pa = 1, where the frequency vanishes again. The 
point R = 0, pa = 1 determines, of course, the onset of the Rayleigh-Taylor 
instability, which is independent of the wavenumber a! in the limit of vanishing 
surface tension 8 that  we have assumed. The merger with the Rayleigh-Taylor mode 
emphasizes again the importance of the distortion in the oscillatory interfacial 
instability first found by Richter & Johnson (1974). 

Before 1 -po reaches zero from above the oscillatory coupling mode bifurcates 
from the viscous coupling branch. I ts  frequency increases rapidly and decreases later 
towards the value wo = 1 which characterizes the problem without distortion. The 
oscillatory coupling mode may have physical importance only if the surface tension 
is strong enough and low values of 01 are prohibited by the geometry of the layer such 
that the Rayleigh-Taylor instability is stabilized. In  the case of figure 14 the 
Rayleigh-Taylor instability represents a very strong mechanism such that neutral 
conditions are reached only at R = - 1.89 x lo6 when pa- 1 is as small as 
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FIQURE 15. Schematic diagram of the  experimental apparatus and method of observation. 

6. Experimental apparatus for the study of double-layer convection 
I n  order to compare the theoretical predictions with experimental observations a 

convection layer in the form of a channel sandwiched between two copper blocks has 
been built as shown in figure i5. The form of a horizontal channel has been chosen 
in order to force alignment of the convection rolls parallel to the short side of the 
channel. The pattern of convection was observed with the shadowgraph method. 
Parallel light intersecting the channel along the axis of the rolls is slightly deflected 
because of the varying index of refraction. The light intensity received on the other 
side of the channel thus measures the change in the index of refraction and thereby 
the horizontal distribution of the temperature. A camera was used to obtain a picture 
of the variations in light intensity or alternatively a photo diode was moved in 
parallel to the long side of the channel by a stepping motor and a curve measuring 
the light intensity a t  a certain height of the channel was obtained. Here we shall 
report only results obtained with the latter technique. 

Two different channels with the dimensions 90 x 20 x 12 mm3 and 140 x 8 x 12 mm3 
were used, where 12 mm refers to the height d of the channel. The sidewalls were 
made from 1 mm thick glass and the lower copper block was heated by a 50 C2 
resistance wire of constantin. A water cooling channel kept the upper copper block 
at a constant temperature. The system was enclosed in a box which itself was 
insulated by Styrofoam. The temperature difference between the copper blocks in the 
neighbourhood of the boundary of the convection layer was measured with several 
copper-constantin thermo-elements. The accuracy of the temperature measurements 
was better than 0.01 K ;  the accuracy to which the temperature difference between 
top and bottom of the channel could be kept constant over periods of the order of 
hours was 0.03 K. 

The height of the channel was chosen sufficiently large such that the uncertainty 
in the position of the interface caused by the meniscus is relatively small, while the 
temperature difference across the layer is not too small for the selected liquids. In  the 
case of the 20 mm wide channel the influence of the sidewalls on the critical Rayleigh 
number is sufficiently small to  be negligible according to the theoretical results of 
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P P CP Y A 
( lo3 kg m-3) ( Ns m-a) (kJ kg-' K-l) ( K-') (Wm-' K-') 

Ethylene glycol 1 . 1 1  19.9 2.35 62 0.25 
Oil [Hanselinem] 0.90 23.8 1.8 100 0.15 
n-Decane 0.73 0.93 2.2 120 0.13 

TABLE 2. Properties of liquids used in experiments 

Frick & Clever (1980). In  the 8 mm wide channel, however, the increase in the critical 
Rayleigh number is significant. This increase has actually been helpful in some cases 
because the larger temperature variations obtained after the onset of convection 
could be measured more easily. 

The search for suitable immiscible liquids turned out to be one of the most difficult 
tasks of the experiment. Most so-called immiscible fluids are miscible to some extent 
which tends to change the properties of the double-convection layer in the course of 
an experimental run. This problem is amplified by the temperature dependence of 
solubility which could, for example, cause separation of the mixed phase at the cold 
boundary. From the observational point of view it is also desirable that the variation 
in the index of refraction induced by convection is comparable for both liquids. The 
combinations ethylene glycol-oil and ethylene glycol-decane were finally selected 
because of the miscibility of less than 0.1% and because of a relatively small 
difference in the adhesion to the glass wall. The oil is actually a commercially 
available mixture (Hanselinem) the properties of which had to be measured. Since the 
coefficient of expansion, the thermal conductivity and the specific heat do not vary 
much for different mineral oils, the typical values listed in handbooks such 
as Hodgman (1960) have been used. The properties are listed in table 2. 
The temperature dependence of the surface tension has not been included since 
the Marangoni effect was small in comparison with the buoyancy effect in the 
experimental configuration. 

In the case of the oil a temperature gradient can induce variations in the 
concentrations of the constitutents of the oil. In  order to avoid this Soret effect, the 
experiments have to be carried out on a timescale that is sufficiently short in 
comparison with the timescale of diffusion. Alternatively, the Rayleigh number for 
onset of convection can be determined by decreasing the Rayleigh number rather 
than by increasing it. In this fashion the mixing by the convection motion overcomes 
the Soret effect. The experimental runs reported in the next section have been done 
using both methods and have not led to any significant difference in the results. 

7. Experimental observations 
A typical record of an experimental run is shown in figure 16. The Rayleigh number 

R* is about 30% higher in this case than R. Convection predominates in the upper 
layer at  Rayleigh numbers beyond the critical value for onset of convection until the 
variation of temperature becomes clearly noticeable in the lower layer as well. The 
relative phase of the temperature signal indicates thermal coupling. In figure 17 this 
experimental run has been repeated in the 8 m m  wide channel. Now the weak 
variation of the temperature in the lower layer after onset of convection can be 
resolved which indicates viscous coupling before the transition to thermal coupling. 
The theoretical analysis agrees with these observations. The predicted onset 
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0 10 20 30 40 50 60 70 
Position (mm) 

FIQURE 16. Light intensity along horizontal tracks corresponding to the lower layer (glycol, solid 
line) and to the upper layer (oil, dashed line) for the 2 cm wide channel with d, = 1. The lines 
correspond to the temperature differences (from the bottom) 1.38 K,  1.77 K, 2.12 K, 2.47 K,  
2.77K, 3.09K, 3.41 K, 3.74K, 4.05K, 4.36K, 4.61 K,  4 .85K, 5.09K. 

0 10 20 30 40 50 60 
Position (mm) 

FIGURE 17. Same aa figure 16, except for a 0.8 cm wide channel. The temperature differences 
(from the bottom) are 3.40 K,  4.07 K, 4.66 K ,  5.26 K.  

occurs at AT = 2.22 K while the observed value for the 20 mm wide channel is 
AT = 2.1 f0.2 K. The theoretical analysis indicates a second Rayleigh number as in 
figure 2 corresponding to thermal coupling. Although a nonlinear analysis is needed 
to follow the evolution of finite-amplitude convection, the linear analysis is useful in 
this case since thermal coupling usually seems to win in the competition between the 
two types of coupling. Even the theoretically predicted decrease in the critical 
wavenumber of about 5 % in the transition from the viscous to the thermal coupling 
case seems to be borne out by the experiment. An increase of the wavelength is 
clearly noticeable both in figure 16 and in figure l?. 

In  a second series of experiments the glycol layer has been increased in size such 
that the case do = 0.7 is attained. Because of the relationship R > R* the wavelength 
of 27 mm at the onset of convection reflects the size of the deeper layer as shown in 



538 

* 
.C 

3 2  
3 

S. Rasenat, F .  H .  Busse and I .  Rehberg 

*----_ _L--Y . -- - _ _  
------------------------------------------, - - 

-------- 
1 1 I I 

Position (mm) 

FIGURE 18. Same as figure 16, but for do = 0.71. The temperature differences (from the bottom) 
are 2.01 K,  2.18 K,  2.29 K ,  2.47 K, 2.60 K. 

figure 18. Because of the weak signal, a high amplification has been used in recording 
the light intensity. The signal-to-noise ratio is thus much lower than in the previous 
figures. The critical temperature difference of 2.1 k0.2 K obtained from the data of 
figure 18 and from similar data agrees well with the theoretical value of 2.14 K. The 
viscous coupling evident in figure 18 persist until a temperature difference of 3.3 K 
is reached, a t  which point a convection mode with its maximum amplitude in the 
upper layer starts to  compete with the existing convection structure. No regularly 
arranged convection could be observed in the interval 3.3 K 5 AT 5 4.1 K. There 
appear to  be adjustment difficulties which prohibit the system from selecting a well- 
organized state. At AT = 4.3 K, however, the upper-layer mode appears to become 
dominant and a well-defined pattern with a wavelength of 12 mm becomes visible as 
shown in figure 19. The layers are thermally coupled in this regime ; the small phase 
shift between the solid and broken lines in the upper part of the figure is caused by 
a slow drift of the pattern. Because of the non-uniform adhesion of the interface to 

FIGURE 19. Same as figure 18 but the temperature differences (from the bottom) 
are 3.69K, 3.89K, 4.13K, 4.34K, 4.52K, 4.73K, 4.90K. 
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the glass walls it was not always possible to obtain an exactly horizontal interface. 
A slow large-scale circulation is thus sometimes present which appears to be 
responsible for the drift of the pattern that becomes noticeable on the timescale of 
15 minutes, the interval between the recording of the solid and broken lines. 

The observations in the glycol-decane system show rather similar results which 
will not be reported here, but can be found in Rasenat (1987). One of the main goals, 
the observation of the oscillatory onset of convection, has not yet been achieved. An 
experimental search is continuing. But because of the restricted types of immiscible 
liquids available and the time-consuming experimental procedure there is little hope 
that the oscillatory onset can be realized in the near future. 

8. Concluding remarks 
In principle numerical computations carried out at particular points of the 

parameter space do not permit rigorous global conclusions about the behaviour of 
solutions as a function of the parameters. This restriction is felt most strongly in the 
case of high-dimensional parameter spaces such as that associated with the problem 
of double-layer convection considered in this paper. Because of space limitations only 
representative examples of the computations that have been performed in the course 
of this work have been described in the preceding sections. It seems, however, that 
all the physically interesting features of the onset of double-layer convection have 
been covered in the case without distortion of the interface. The main results are that 
onset of convection can occur in the form of both viscously and thermally coupled 
motion and that a Hopf bifurcation noticed by Gershuni & Zhukhovitskii (1982) does 
indeed describe the critical mode in the form of the oscillatory coupling instability 
in a certain region of the parameter space. When the distortion of the interface is 
included, a much richer problem is obtained and an extra time derivative enters the 
analysis together with one or two additional parameters. Because of the geophysical 
implications of the problem, there has been a considerable effort in numerical 
simulation of nonlinear aspects of the problem. Other relevant papers, in addition to 
those already mentioned, are Busse (1982), Christensen & Yuen (1984) and Schmeling 
(1988). The latter paper is of particular interest for the regime po > 1, R < 0 that has 
been discussed in this paper only in connection with figure 14. 

Even without its geophysical applications the problem of double-layer convection 
is likely to attract continuing and increasing attention. The numerous bifurcation 
features already apparent in the linear theory will lead to an even richer variety of 
structures when nonlinear regimes are considered. The possibility of different spatial 
patterns in the upper and lower layers opens up new degrees of freedom in nonlinear 
interaction. The recent work by Cserepes, Rabinowicz & Rosenburg-Borot (1988) 
on three-dimensional double-layer convection gives some indications of those 
possibilities. Detailed experimental observations and measurements are especially 
desirable in the current state of the research on this problem. 

The support of the Stiftung Volkswagenwerk for the research reported in this 
paper is gratefully acknowledged. 
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